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Abstract

The problem of diffusion and reaction in catalyst pellets is considered for the case ofnth order reactions. The Adomian decomposition
method is used to solve the nonlinear model of diffusion and reaction and to obtain approximate solutions. The variation of reactant
concentration in the catalyst pellet and the effectiveness factors are determined for second-, half- and first order reaction. The approximate
analytical solutions obtained are compared with solutions obtained with a finite difference numerical method. In general, the Adomian
polynomial method with three terms gives solutions comparable to the numerical procedure for Thiele modulus approximately up to 4.0.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear problems frequently arise in engineering, but
many texts are oriented towards linear problems due to the
difficulty of nonlinearity. Adomian[1] has developed the de-
composition method to solve the deterministic or stochastic
differential equations. The solutions obtained are approxi-
mate and fast to converge as shown by Cherrault[2]. In
general, satisfactory results can be reached by using the first
few terms of the approximate, series, solution. The Ado-
mian method has been used to solve several mathematical
problems in science and engineering, but there has been no
reported application in chemical engineering to date.

The model for coupled diffusion and reaction in porous
catalyst pellets generates a typical differential equation in
chemical engineering. Thiele[3] obtained the analytical so-
lution for the first order reaction in 1939, and then Wheeler
[4] and Aris [5], etc. discussed this problem in details in
their books. However, most of their conclusions were based
on the analytical solution for the irreversible reaction with
the first reaction order. Several researchers, such as Satterfild
[6], have considered solutions for the nonlinear model with
nth order reaction, but approximate solutions were not de-
rived. Finlayson[7] has applied many numerical methods to
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solve nonlinear models of fluid flow, heat transfer and chem-
ical reactor by using pre-programmed computer packages.
The difficulty in the solution of such problems occurs when
there is a large change in reaction rate, where the method
does not always converge and convergence may depend crit-
ically on the initial guess. A disadvantage of numerical tech-
niques is that they cannot give analytical expressions as
solution.

In this paper, the Adomian decomposition method is in-
troduced into chemical engineering, to solve the nonlinear
model of diffusion and reaction in porous catalysts withnth
order reaction and to obtain approximate analytical solu-
tions. Such expressions are of immediate value to catalytic
reactors as they enable rapid estimation of the effect of pore
diffusion on reactions in porous catalysts via the well-known
concept of effectiveness.

2. The model of diffusion and reaction

An important problem in chemical engineering is to pre-
dict diffusion and reaction rates in porous catalysts when
the reaction rate can depend on concentration in a nonlin-
ear way. In this heterogeneous system (solid material with
pores through which the reactants and products diffuse),
the system is modelled as simple diffusion using an effec-
tive diffusion coefficient. We assume for diffusion that all
the microscopic details of the porous medium are lumped
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Nomenclature

Am Adomian polynomial
c dimensionless concentration
c′ concentration
De effective diffusion coefficient
k reaction rate constant
l catalyst pore length
L linear operator
m terms in the Adomian polynomial
n order of reaction
N nonlinear operator
r reaction rate
R remainder of linear operator
x dimensionless co-ordinate dimension
x′ co-ordinate dimension

Subscripts
0 positionx = 0
1 positionx = 1

Greek letters
η effectiveness
θ approximate solution
φ effectiveness factor

together into the effective diffusion coefficientDe for reac-
tant. With this approximation a mass balance on a volume
of the porous medium gives

∂c′

∂t
= ∇ · De ∇c′ − r(c′) (1)

wheret is the time,c′ the chemical reactant concentration,
andr(c′) the rate of reaction per unit volume.

Let us next assume that the diffusion occurs, at a steady
state, in a porous slab that is infinite in two directions, giving
a large plane sheet with diffusion through the thickness of
the sheet. We thereby simplifyEq. (1)to one dimension by
assuming negligible variation of the concentrations in they
andz directions, to give, whenDe is constant

d2c′

dx′2 − r(c′)
De

= 0 (2)

wherex′ is the diffusion distance.
Here, we consider one side (or the centre) of the slab as

impermeable (no flux) and the concentration is held fixed at
the other side. The two boundary conditions are

x′
0 = 0, −De

dc′

dx′ = 0 (3)

x′
l = l, c′ = c′

s (4)

The problem inEqs. (2)–(4) is an ordinary differential
equation and a boundary-value problem. This nature of
boundary-value problems, i.e. having conditions at each
end of the domain, complicates the solution techniques but

is characteristic of diffusion, heat transfer and fluid flow
problems.

We consider the reaction A→ B, with the rate depending
on thenth power of concentration of A, denoted bykc′n ,
where the reaction constantk is a function of temperature.
The goal is to predict the overall reaction rate, or the mass
transfer in and out of the catalyst pellet.

For a suitable solution, dimensionless equation can be
derived fromEqs. (2)–(4)by lettingx = x′/l, c = c′/c′

s. For
an isothermal reaction that isnth order and irreversible in
planar geometry, we obtain

d2c

dx2
− φ2cn = 0 (5)

x = 0,
dc

dx
= 0 (6)

x = 1, c = 1 (7)

where the Thiele modulus,φ2 = k0l
2cn−1

0 /De. The group
1/l(k0c

n−1
0 ) is a characteristic property for reaction, while

De/l is a characteristic property for diffusion. The Thiele
modulus thus measures the relative importance of the diffu-
sion and reaction phenomena.

In catalytic reactors, the effectiveness factor is defined
as the average reaction rate, i.e. with diffusion, divided by
the reaction rate if the rate of reaction is evaluated at the
boundary condition value atx = 1. The last quantity is the
average reaction rate if diffusion is very fast, presenting no
limitation to the mass transfer. The effectiveness factor is
generally given by

η =
∫ 1

0 r1(c(x))xa−1 dx∫ 1
0 r1(1)xa−1 dx

(8)

The parametera = 1, 2 and 3, respectively, for flat plate,
cylindrical or spherical geometry. We can integrateEq. (8)
over the domainx = 0–1 and rewriteEq. (8)as

η = a

φ2

(dc/dx)(1)

r(1)
(9)

At small φ, the effectiveness factor is close to 1, meaning
that the rate of reaction is relatively uninfluenced by diffu-
sion. For largeφ, the effectiveness factor is smaller than 1,
meaning the average reaction rate is lower than that without
diffusion limitations. This effect must be correctly modelled
by the chemical engineer in the design and operation of cat-
alytic reactors.

3. The solution with decomposition

In general, a differential equation can be expressed by an
operator equation. With the first decomposition, the original
deterministic nonlinear differential equation can be written
into Adomian’s general form as

Fy = g(x) (10)
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F̃y = Ly + Ry+ Ny = g(x) (11)

whereL is a linear operator and is the highest order differen-
tial, R the remainder of the linear operator,N the nonlinear
operator of an analytic nonlinearity, andg(x) an inhomoge-
neous or forcing term.Eq. (11)can be solved by applying
the inverse operatorL−1

L−1Ly = L−1g(x) − L−1Ry− L−1Ny (12)

whereL−1 simply symbolisesn-fold integrations for annth
orderL.

In the case ofEq. (5), for an isothermalnth order reaction
in a slab of porous catalyst

L = d2

dx2
, L−1 =

∫ ∫ x

0
[·] dx dx, y = c, R = 0, g = 0

The solution of equationEq. (5)can thus be described as

Lc = φ2Nc (13)

Processing the inverse operation, we have

L−1Lc = L−1φ2Nc (14)

c = φ2L−1Nc+ φ (15)

Secondly, the solution process is assumed to be given by
decomposition, i.e.

c =
∞∑

m=0

cm (16)

Nc = f(c) =
∞∑

m=0

Am (17)

whereAm is called the Adomian polynomial.
Collecting terms,Eqs. (16) and (17)can be parameterised

as

c =
∞∑

m=0

λmcm = c0 + λc1 + λ2c2 + · · · (18)

Consequently,

Nc = f(c) = f [c(λ)] =
∞∑

m=0

λmAm (19)

wheref(c) is to be specified and assumed analytical inλ.
SubstitutingEqs. (16) and (17)into Eq. (15), we obtain

∞∑
m=0

λmcm = φ2L−1
∞∑

m=0

λmAm (20)

According to Adomian’s work[1], the expressions for
A0, A1, A2, . . . , Am, can be written as

A0 = h0(c0) = f(c0)

A1 = h1(c0)c1

A2 = 1
2[h2(c0)c

2
1 + 2h1(c0)c2]

A3 = 1
6[h3(c0)c

3
1 + 6h2(c0)c1c2 + 6h1(c0)c3]

A4 = 1
24[h4(c0)c

4
1 + 12h3(c0)c

2
1c2 + h2(c0)(12c2

2

+ 24c1c3) + 24h1(c0)c4]
...

Am = 1

m!
[hv(c0)]

hv(c0) =
(

dv

dcv

)
f [c(λ)]λ=0 =

(
dv

dcv

)
f(c0)

...

(21)

where

c0 = constant
c1 = φ2L−1A0

c2 = φ2L−1A1
...

cm = φ2L−1Am

...

(22)

Then the particular solutions ofc(x) can be written directly
as

A0 = cn
0

c1 = 1

2!
φ2cn

0x2

A1 = 1

2!
φ2c2n−1

0 x2

c2 = n

4!
φ4c2n−1

0 x4

A2 = 4n2 − 3n

4!
φ4c3n−2

0 x4

c3 = 4n2 − 3n

6!
φ6c3n−2

0 x6

A3 = 34n3 − 63n2 + 30n

6!
φ6c4n−3

0 x6

c4 = 34n3 − 63n2 + 30n

8!
φ8c4n−3

0 x8

A4 = 496n4 − 1554n3 + 1689n2 − 630n

8!
φ8c5n−4

0 x8

c5 = 496n4 − 1554n3 + 1689n2 − 630n

10!
φ10c5n−4

0 x10

...

(23)
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4. Analytical approximate solutions with three terms

Let the approximate solutionθm+1(x) = ∑m
m=0cm,

θm+1 → c as m → ∞ (0 ≤ θm+1 ≤ 1). We will first
derive the approximate solution for a first reaction order to
compare to its analytical solution, and then the approximate
solutions with common nonlinear reaction orders—second
and half.

4.1. The linear case

For the first order reactionn = 1, thef(c) is linear. Hence,
we have

cm = 1

(2m)!
φ2mc0x

2m,

∞∑
m=1

cm = c0

[
1 +

∞∑
m=1

[
1

(2m)!
φ2mc0x

2m

]]
= c0 cosh(φx)

(24)

Substitution of the boundary conditionsEqs. (6) and (7), the
analytical can be obtained

c = cosh(φx)

cosh(φ)
(25)

4.2. The nonlinear case

The approximate solution can be described

θm+1 = c0 + c1 + c2 + · · · + cm

= c0 + 1

2!
φ2cn

0x2 + n

4!
φ4c2n−1

0 x4

+ 34n3 − 63n2 − 30n

6!
φ6c3n−2

0 x6

+ 34n3 − 63n2 + 30n2

8!
φ8c4n−3

0 x8

+ 496n4 − 1554n3 + 1689n2 − 630n

10!
φ10c5n−4

0 x10

+ · · · + cm (26)

Taking the first three terms ofEq. (26)and using the bound-
ary condition

x = 1, c = 1

Eq. (26)becomes

θm+1 = c0 + c1 + c2 = c0 + 1

2!
φ2cn

0x2 + n

4!
φ4c2n−1

0 x4,

1 = c0 + 1

2!
φ2cn

0 + n

4!
φ4c2n−1

0 (27)

For the reaction ordern = 1, we have

1 = c0 + 1

2!
φ2c0 + 1

4!
φ4c0, c0 =

(
1 + 1

2!
φ2 + 1

4!
φ4
)−1

An expression of the approximate solution forn = 1, θ3,1
denoted, can be written

θ3,1 = c0

(
1 + 1

2!
φ2x2 + 1

4!
φ4x4

)
(28)

For the reaction ordern = 2, we have

1 = c0 + 1

2!
φ2c2

0 + 2

4!
φ4c3

0

Solving the algebraic equation of the third degree, the root
can be obtained

c0 = 3

√
8

φ6
+ 12

φ4
− 2

φ2

An expression of the approximate solution forn = 2, θ3,2
denoted, can be written

θ3,2 = c0 + 1

2!
φ2c2

0x
2 + 2

4!
φ4c3

0x
4 (29)

For the reaction ordern = 0.5, we have

1 = c0 + 1

2!
φ2c0.5

0 + 0.5

4!
φ4c0

0

Let α = c0.5
0 , then

θ3 = −1 + α2 + 1

2!
φ2α + 2

4!
φ4

Solving the algebraic equation of the second degree, the root
can be obtained

α = 1
4

(√
2
3φ4 + 16− φ2

)
, c0 = α2

An expression of the approximate solution forn = 0.5,θ3,0.5
denoted, can be written

θ3,0.5 = c0 + 1

2!
φ2c0.5

0 x2 + 2

4!
φ4x4 (30)

5. The approximate solution with more than three terms

To obtain the value of rootc0 from Eq. (26), we have
to use a numerical method, for example, the Newton’s ap-
proximation, except in the case of a first reaction order. For
example, we consider the expressions with six terms are as
follows.

Taking the first six terms ofEq. (26)and using the bound-
ary condition

x = 1, c = 1

Eq. (26)becomes

1= c0 + 1

2!
φ2cn

0 + n

4!
φ4c2n−1

0 + 4n2 − 3n

6!
φ6c3n−2

0

+ 19n3 − 18n2

8!
φ8c4n−3

0

+ 481n4 − 1509n3 + 1659n2 − 630n

10!
φ10c5n−4

0 (31)
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Table 1
The values of rootc0 for n = 2 at various values of parameterφ

φ Four terms Five terms Six terms

0.5 0.8959 0.8959 0.8959
1 0.7125 0.7123 0.7123
2 0.4467 0.4444 0.4439
4 0.2232 0.2176 0.2144

10 0.0716 0.0635 0.0621

Then we can determine the meaningful real root of the poly-
nomial, 0≤ c0 ≤ 1.

(1) For the reaction ordern = 1

1 = c0

(
1 + 1

2!
φ2 + 1

4!
φ4 + 1

6!
φ6 + 1

8!
φ8 + 1

10!
φ10
)

,

c0 =
(
1 + 1

2!
φ2 + 1

4!
φ4 + 1

6!
φ6 + 1

8!
φ8 + 1

10!
φ10
)−1

,

θ6,1 = c0

(
1 + 1

2!
φ2x2 + 1

4!
φ4x4 + 1

6!
φ6x6

+ 1

8!
φ8x8 + 1

10!
φ10x10

)
(32)

(2) For the reactionn = 2

1 = c0 + 1

2!
φ2c2

0 + 2

4!
φ4c3

0 + 10

6!
φ6c4

0 + 80

8!
φ8c5

0

+ 1000

10!
φ10c6

0,

θ6,2 = c0 + 1

2!
φ2c2

0x
2 + 2

4!
φ4c3

0x
4 + 10

6!
φ6c4

0x
6

+ 80

8!
φ8c5

0x
8 + 1000

10!
φ10c6

0x
10 (33)

The values for the roots ofc0 are given inTable 1.
(3) For the reaction ordern = 0.5

1= c0 + 1

2!
φ2c0.5

0 + 0.5

4!
φ4c0

0 + −0.5

6!
φ6c−0.5

0

+ −2.125

8!
φ8c−1

0 + −58.8125

10!
φ10c−1.5

0

The roots of the polynomial can be calculated for dif-
ferent values of Thiele moduli, as shown inTable 2. We

Table 2
The values of rootc0 for n = 0.5 at various values of parameter

φ Four terms Five terms Six terms

0.5 0.8813 0.8813 0.8813
1 0.5946 0.5946 0.5946
1.5 0.2965 0.2987 0.2959
2 0.1160 0.2176 0.2144
2.5 0.0642 0.0635 0.0621

have for the solution

θ6,2 = c0 + 1

2!
φ2c0.5

0 x2 + 2

4!
φ4c0

0x
4 + 10

6!
φ6c−0.5

0 x6

+ 80

8!
φ8c−1

0 x8 + 1000

10!
φ10c−1.5

0 x10 (34)

6. The effectiveness factor of the catalyst

By using theEq. (9), the analytical expressions for the
effectiveness factor can be obtained fromEqs. (27), (29) and
(30) with three terms

η3 = a

φ2

(dc/dx)(1)

cn(1)
= 1

φ2

(dc/dx)(1)

1

= cn
0 + n

3!
φ2c2n−1

0 (35)

For the reaction ordern = 2, the effectiveness factor

η3,2 =
(

3

√
8

φ6
+ 12

φ4
− 2

φ2

)2

+ φ2

3

(
3

√
8

φ6
+ 12

φ4
− 2

φ2

)3

(36)

For the reaction ordern = 0.5, the effectiveness factor

η3,0.5 = 1

4



√

2φ4

3
+ 16− φ2


+ φ4

12
(37)

The general expression for the effectiveness factor fornth
reaction order can be derived fromEq. (26)as

ηm+1,n = (dθm+1,n/dx)(1)

φ2
= cn

0 + n

3!
φ2c2n−1

0

+ 4n2 − 3n

5!
φ4c3n−2

0 + 19n3 − 18n2

7!
φ6c4n−3

0

+ 481n4 − 1509n3 + 1659n2 − 630n

9!
φ8c5n−4

0

+ · · · + 1

φ2

dcm

dx
(1) (38)

The effectiveness factor calculated byEq. (8) or (9)may be
different for numerical and decomposition methods.

7. Discussion

For this problem,c0, the root of the polynomial, is the
value ofc atx = 0, where the boundary condition is dc/dx =
0. We can only obtain all of the forms of partial solutions
if the c0 is known. It is obvious that, the stronger the non-
linearity of the problem, the more terms will be required in
the approximate solution. The nonlinearity depends on both
the function and the value of parameterφ.

In this work, we obtain typical variations of reactant con-
centrations in the catalyst pellet and effectiveness factors
using the decomposition method and compare them against
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Fig. 1. Variation of concentration in porous catalyst as a function of Thiele modulus for a first order reaction. Values ofφ on figure. Numerical/analytical
solution overlap as solid lines. Values of Thiele modulus increase from top to bottom as 1, 2, 5, 10. Adomiam decomposition three, four, five and six
terms increase from top to bottom of associated curves.

values obtained by a numerical solution. The numerical so-
lution method is a finite difference procedure based on New-
man’s BAND method[8]. The BAND method has proven
to be very effective for solution of nonlinear problems of
diffusion and reaction in electrochemical systems[9].

Fig. 2. Variation of concentration in porous catalyst as a function of Thiele modulus for a second order reaction. Values of Thiele modulus increase from
top to bottom. Numerical solution (- - -). Adomiam decomposition three, four, five and six terms increase from top to bottom of associated curves.

7.1. Concentration profiles

Figs. 1–5 show the variation in dimensionless con-
centration in the catalyst slab as a function of Thiele
modulus.
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Fig. 3. Variation of concentration in porous catalyst as a function of Thiele modulus for a half order reaction. Values ofφ (0.5, 1.0, 1.5, 2.0) increase
from top to bottom. Numerical solution (- - -). Adomiam decomposition three and four terms.

For a first order reaction (Fig. 1), the classic trend of
a greater nonlinear variation in concentration profile with
increase in Thiele modulus is seen. The numerical method
gives agreement with the analytical solution to within
0.00001 for all data. In the case of the Adomian decom-
position at values of very high Thiele modulus (>5), the

Fig. 4. Variation of concentration in porous catalyst as a function of Thiele modulus for a 1.73th order reaction. Values ofφ (0.5, 1.0, 1.5, 2.0) increase
from top to bottom. Numerical solution (- - -). Adomiam decomposition four, five and six terms increase from top to bottom of associated curves.

three-term approximation does not yield satisfactory agree-
ment with the numerical solution. However, on increasing
the terms to six in the decomposition method, a reasonable
agreement with the numerical solution is achieved.

Figs. 2 and 3show the equivalent concentration profiles
for second and half order reactions, respectively. In the case
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Fig. 5. Variation of concentration in porous catalyst as a function of Thiele modulus for a 0.67th order reaction. Values ofφ (0.5, 1.0, 1.5, 2.0, 2.5, 3.0)
increase from top to bottom. Numerical solution (- - -). Adomiam decomposition four and five terms increase from top to bottom of associated curves.

of these reaction orders, there is no analytical solution to the
problem and thus comparisons with a numerical method can
only be made. For the second order reaction, there is good
agreement between the decomposition method with three
terms and numerical solution for a Thiele modulus of 1.0.
As the Thiele modulus increases the accuracy (agreement
with the numerical solution) decreases with a three-term
decomposition solution. In the case of Thiele moduli >5,

Fig. 6. Variation of concentration in porous catalyst as a function of Thiele modulus for negative order reaction. Values ofφ increase from top to bottom.
Numerical solution (- - -). Adomiam decomposition four terms (—).

a six-term decomposition is required to achieve reasonable
agreement.

With an half order reaction, the decomposition method
gives again good agreement with the numerical solution
at lower values of Thiele modulus. At higher values of
Thiele modulus either the three- or four-term decomposi-
tion method give acceptable agreement with the numerical
method.
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Fig. 7. Variation in effectiveness factor with Thiele modulus for first and second order reactions. Upper set: first order reaction; lower set: second order
reaction. Numerical solution (- - -). Adomiam decomposition four, five and six terms increase from bottom to top. O.C: solution by orthogonal collocation
(—).

To assess the generality of the decomposition solution
method, we have applied it to several arbitrary reaction
orders. In the case of reaction orders greater than 1.0, e.g.
1.73 (Fig. 4) the trends in the solution with the decomposi-
tion method are as seen earlier (Figs. 2 and 3). However, for
reaction orders less than 1.0, e.g. 0.67, the decomposition
method appears to be the preferred method (seeFig. 5).

Fig. 8. Variation in effectiveness factor with Thiele modulus for a half and 0.67th order reaction. Upper set: first order reaction; lower set: second order
reaction. Numerical solution (—). Adomiam decomposition four terms (- - -).

With the finite difference method, attempts at solution with
Thiele moduli of 2.5 and greater resulted in divergence
whereas the four-term decomposition method always gave
a solution. Furthermore, in analysing systems where high
concentration impedes reaction, apparent negative reaction
orders, the decomposition method proved to be the preferred
method in solution (seeFig. 6). For a reaction order of−1.0,



10 Y.-P. Sun et al. / Chemical Engineering Journal 102 (2004) 1–10

Fig. 9. Variation in effectiveness factor with Thiele modulus for a negative order reaction.

solution by finite difference was not achieved whereas the
four-term decomposition gave convergent solutions. With
an apparent reaction order of−0.5, finite difference could
only be used for Thiele moduli of 0.3–0.5 and the solution
was in good agreement with the four-term decomposition
method.

7.2. Effectiveness

Effectiveness is an important concept in catalytic reactor
analysis. Calculated values of effectiveness for the reaction
orders discussed inSection 7.1are described here. Clearly
all of the data show the expected trend of a decrease in
effectiveness with increase in Thiele modulus. For the first
order reaction, numerical and analytical solution agree as
expected (seeFig. 7). The agreement between the numerical
method and decomposition improves as the number of terms
in the decomposition method increase; again as expected.
Also shown inFig. 7are values effectiveness, obtained using
an analytical solution obtained with one-point orthogonal
collocation, for a second order reaction[7]. This is the only
known approximate analytical solution obtained prior to this
work. As can be seen agreement with solutions by finite
difference or decomposition methods is poor.

Fig. 8shows effectiveness values determined for reaction
orders less than 1.0, i.e. 0.5 and 0.67. Agreement between
finite difference and the four-term decomposition is gener-
ally good up to Thiele moduli of 2.0.

Fig. 9 shows typical values of effectiveness for appar-
ent reaction order less than 0, i.e.n = −0.5. As expected
effectiveness increases with Thiele modulus as at lower
concentrations in the pores the reaction rate is suppressed
less.

8. Conclusions

The Adomian decomposition method for solution of
nonlinear boundary-value problems has been successfully
applied to the case of diffusion and reaction in a porous
catalyst. An approximate form of solution is obtained which
can continuously give the value of the functiony for any
value of variablex. A three-term solution for effectiveness
is often quite accurate and easy to derive. It is possible to
obtain an analytical expression of approximate when the
nonlinear term is simple.
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